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We show that keeping a constant lower limit on the net-time headway is the key mechanism behind the
dynamics of pedestrian streams. There is a large variety in flow and speed as functions of density for empirical
data of pedestrian streams obtained from studies in different countries. The net-time headway, however, stays
approximately constant over all these different data sets. By using this fact, we demonstrate how the underlying
dynamics of pedestrian crowds, naturally follows from local interactions. This means that there is no need to
come up with an arbitrary fit function �with arbitrary fit parameters� as has traditionally been done. Further, by
using not only the average density values but the variance as well, we show how the recently reported
stop-and-go waves �Helbing et al., Phys. Rev. E 75, 046109 �2007�� emerge when local density variations take
values exceeding a certain maximum global �average� density, which makes pedestrians stop.
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I. INTRODUCTION

With an increasing population and with more cost effec-
tive transportation, mass gatherings become more frequent.
The total size of such gatherings are often as large as mil-
lions of people, for example, during the inauguration cer-
emony of president Obama �1� and the Hajj pilgrimage to
Mecca �2�.

To guarantee the safety of the participants during such
large mass gatherings, careful planning needs to be carried
out by the organizer. During the last decades, numerous em-
pirical studies �2–13� have been performed on pedestrian
crowds in different countries in order to understand the dy-
namics of these crowds. Even though an understanding of
crowd dynamics is a prerequisite for being able to plan a
mass gathering, there is still no consensus on some of the
most basic relations, such as how the flow of people �people
per meter per second� depends on the crowd density
�people /m2�. Misconceptions of these basic relations may
result in serious safety risks during mass gatherings �13�.

Let us now start from the bottom up, and show how local
interactions lead to certain flow-density relationships for the
stream of pedestrians. Since movement and avoidance pat-
terns of pedestrians tend to be rather complex, the traditional
way to reduce complexity is to find a relation of the flow Q
�m−1 s−1� as a function of the average density � �m−2�. Using
this relation, called the fundamental diagram, has been suc-
cessful to some extent, but unfortunately there are large
variations in these relations, among empirical studies carried
out in different countries. All these studies agree on that
walking speed of pedestrians is a decreasing function of den-
sity, but they disagree on how this function looks like. We
will now demonstrate how the net-time headway, as a result
of finite reaction times, is the key mechanism which can
explain the discrepancies between data sets from different
studies.

II. REACTION TIME

It is known from traffic science that finite reaction times
are needed to explain instabilities in traffic flows �14�. For

pedestrian-flow dynamics, the role of finite reaction times
has not been investigated in detail. By doing so, it turns out
that the finite reaction time gives rise to a certain net-time
headway, which is needed as a safety headway, to prevent
accidental physical encounters with surrounding pedestrians.

Many-particle simulations �15,16� coupled with empirical
pedestrian-trajectory data �17� reveal the probability-density
function of delay times Td from a walking experiment �18�
where two pedestrian streams are intersecting at a 90° angle.
The resulting distribution of delay times are shown in Fig. 1.

Interestingly, the probability-density function of the delay
curve is bimodal. The first peak occurs at lower times than
the typical response times, to visual or acoustic cues �19,20�.
Therefore, this peak must correspond to anticipated move-
ments of the surrounding pedestrians. The second peak at
around 0.45 s occurs at times which are significantly larger
than the previously mentioned response times but also lower
than response times involving conscious reactions �14,21�.
Therefore, we conclude that this second peak corresponds to
an unconscious response, which is more complex than a
simple reaction. In fact, it has been shown that reactions
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FIG. 1. Probability-density function of the delay Td. The error
bars correspond to one standard deviation. Interestingly, the
probability-density function is bimodal. When the surrounding pe-
destrians are acting in a way that is easy to predict, extrapolation
allows to anticipate their behaviors, while a delayed reaction results
in cases of unexpected behaviors.
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where there are more than one possible response �choice re-
action time� as well as reactions to more complex cues �rec-
ognition reaction time� take significantly longer time �22�.

We interpret the bimodality as follows: when the sur-
rounding pedestrians act in a way that is easy to predict,
extrapolation allows to anticipate their behaviors, while a
delayed reaction results in cases of unexpected behaviors.

III. MODEL

There has been a rich amount of microscopic models of
pedestrian dynamics, for example, the social-force model
�15,16� and cellular-automata models �23–25�. These models
are able to reproduce various self-organization phenomena,
such as lane and stripe formation �26�, freezing by heating
�27�, Mexican waves in excitable media �28�, intermittent
outflows �29�, stop-and-go waves, and crowd turbulence
�15�.

When measuring empirical pedestrian flows and densities
and then fitting a suitable curve to the data, one obtains a
function which is useful for engineering involved in planning
of pedestrian facilities. This pragmatic fit curve, however,
does not provide any insight into the mechanisms and dy-
namics behind the pedestrian interactions and behaviors,
leading to the aggregated data.

However, when plotting the fundamental diagrams ob-
tained in various empirical studies �Fig. 3�a��, one can see
that each of the curves has a similar parabolalike shape. Nev-
ertheless, the curves are quite different from one measure-
ment site to another. One question remains to be answered:
what, if any, is the common underlying principle of these
curves?

In an attempt to bridge this knowledge gap, let us come
back to the issue of reaction times, mentioned before. Since
pedestrians have a typical reaction time Td=0.45 s to unex-
pected behaviors of surrounding pedestrians, it would be
natural that they compensate the risk of bumping into others,
by keeping a certain safety time headway to the surrounding
pedestrians �30�.

To connect the aggregated density to local interactions, let
us approximate the mean distance between the center of

masses of a pedestrian � and the closest pedestrian � by d
= �d���=1 /��, where � is the global �31� �average� density.
Note that this would hold only if the pedestrians were dis-
tributed into a square lattice, but for other density distribu-
tions, it will serve as a fair approximation �see Fig. 2�.

The net distance is defined as d̂=d−2r, where r
=1 / �2��max� is the effective radius of a pedestrian and �max
is the largest measured density.

Assuming that the predecessor � �32� would suddenly

stop �29�, it would take T̂= d̂ /v�= �1 /��−1 /��max� /v� sec-
onds before a physical encounter with pedestrian � occurs if
v� is the speed of pedestrian �. We now show how the net-

time headway T̂ depends on the global density � by applying
the above scheme to empirical data determined from differ-
ent studies �see Fig. 3�b��.

Note that T̂ saturates at a constant value that is very simi-
lar to the response time to unexpected behaviors �see Fig. 1�.
However, in the data of Ref. �2� there is a transition at very

high densities, where T̂ suddenly increases. This can be in-
terpreted in at least two ways:
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FIG. 2. The distance between an arbitrary pedestrian � and the
closest surrounding pedestrian � as a function of global �average�
crowd density �. The solid line shows the average value � one
standard deviation as error bars, and the dashed line shows the fit
curve 1 /����. The data is from Ref. �18�.
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FIG. 3. �Color online� �a� flow as a function of density for data

from a number of empirical studies. �b� the net-time headways T̂ as

a function of density �. T̂ is most often bounded by a constant
lower value of about 0.5 s. In the data of Ref. �2�, however, there is

a transition for high densities where T̂ suddenly increases. The data
sets are the same as used in Ref. �2�, i.e., the data from �Helbing et
al.� correspond to local densities and flows.
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FIG. 4. �Color online� Distributions of local densities � for
three different global �average� densities �=1.6, 3, and
5 pedestrians /m2. The data comes from Ref. �2�. For each global
density � a Beta distribution is fitted �dashed lines�. However,
Gaussian distributions �solid lines� also fit the data fairly well. The
Gaussian distributions are produced with the parameters �=� and
�=�� /3.
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�i� Hypothesis 1. When the density is very high, pedestri-
ans start to have fear of crushing or asphyxia �33�, and there-
fore want to increase the space around themselves �leading to

higher net-time headways T̂�.
�ii� Hypothesis 2. If the space in front of a pedestrian is

too small �or the velocity is too low� it will no longer be
possible to take normal steps. Rather, pedestrians will com-
pletely stop until they have gained enough space to make a
step.

In previous work �33�, hypothesis 1 has been used. In this
study, however, we will investigate hypothesis 2. This inter-
pretation would naturally explain the empirically observed

stop-and-go waves analyzed in Ref. �2� and would further
imply: above an average density of 5 persons /m2, the fun-
damental diagram will no longer describe the dynamics of
the crowd well since the flow rate is then alternating between
movement and standstill rather than continuous.

In an attempt to unify all fundamental diagrams in the
same framework, the following scheme is proposed:

Each pedestrian � has a free speed v�
0 =vmax �which is an

upper speed limit, occurring when �→0�. Each pedestrian
also has a lower limit vmin of the speed. For v�vmin, pedes-
trians can no longer make normal steps, and would rather
stop completely. For simplicity, these values are assumed to
be the same for all pedestrians. It has been reported in Ref.
�34� that the free �unconstrained� headways are exponentially
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FIG. 5. �Color online� Fundamental diagrams and velocity-
density relations generated by Eq. �1�, for different free speeds v0.
Note how they all converge for large densities. As a comparison, the
empirical fit curve by Weidmann �3� is shown.
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FIG. 6. �Top� the mean net-time headway �T̂� is obtained via the
fraction of pedestrians who are physically colliding with others and
is therefore stopping and temporarily increasing their net-time head-
way. This fraction is obtained by integrating over the probability-
density-function of the local-density distribution, starting at local
densities � that are higher than the maximum global density �.

�Bottom� the mean net-time-headway �T̂� �solid line� as a function
of the global density �. The net-time headway without stopping is
displayed as a dashed line.
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FIG. 7. �Color online� Fundamental diagrams and velocity-
density relations generated by Eqs. �1�–�3�, assuming a constant-

net-time headway T̂=0.5 s and a minimum velocity vmin

=0.06 m /s. Red markers represent empirical data and solid lines
the theoretically expected relationships. �a� Flow-density data, and
�b� velocity-density data by Weidmann �3�, compared to a funda-
mental diagram generated with the parameters �max=5.4 m−2 and
vmax=1.34 m /s. The dashed line shows the result when it is as-
sumed that no pedestrians are stopping, i.e., fstop=0. �c� Flow-
density data and �d� velocity-density data by Mori and Tsukaguchi
�4�, compared to a fundamental diagram generated with the param-
eters �max=12 m−2 and vmax=1.45 m /s. �e� Flow-density data and
�f� velocity-density data from Helbing et al. �2�, compared to a
fundamental diagram generated with the parameters �max

=9.3 m−2 and vmax=0.45 m /s. �g� Flow-density data and �h�
velocity-density data from Seyfried et al. �11�, compared to a fun-
damental diagram generated with the parameters �max=5.4 m−2

and vmax=1.35 m /s.
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distributed, where the constrained headways on the other
hand, are limited by a desired minimum headway. Therefore,

we propose that the net-time headway T̂ is the key control
parameter for the fundamental diagram. That is, pedestrians
will decrease their speeds, if necessary, to assure a constant

lower limit of the net-time headway T̂. The fundamental dia-
gram can now be specified as

v��� =
d − 2r

T̂
=

1/�� − 1/��max

T̂
�1�

and bounded by �vmin ,vmax�
It has been shown in Ref. �35� that each average density �

corresponds to a distribution of local densities �, and we
therefore approximate the density distribution with a Gauss-
ian distribution N�� ,�� /3� with mean � and standard de-
viation �� /3 �see Fig. 4�.

According to hypothesis 2, defined above, we get an extra
constraint, saying that pedestrians will stop walking if they
are too close to other pedestrians, which happens for �
	�max �physical interaction�. They will then resume walking
again when they have enough space L for taking a step.
Since one step �for low walking speed� needs approximately

L�0.5 m �34�, we get a new net-time headway T̂�
=L /vmin�10 s whenever �	�max.

The fraction of pedestrians that are physically colliding
with others can be measured by integrating the probability-
density-function of the Gaussian distribution �see Fig. 6
�top��

fstop = 	
�max




N���d� , �2�

with mean �=� and standard deviation �=�� /3. Then, the
mean net-time headway �see Fig. 6 �bottom�� is given by the
fraction of stopped pedestrians as

�T̂� = �1 − fstop�T̂ + fstop
L

vmin
. �3�

Figure 5 shows generated fundamental diagrams from Eq.

�1� with the parameters T̂=0.5 s, �max=5.4 m−2, and for
different values of the free speed v0=vmax. Since v0 only
gives the upper limit of the velocity, fundamental diagrams

with different v0 converge at high enough crowd densities,
given that all other parameters are fixed. The reason is that,
for high density, the movement is transformed from indi-
vidual walking to walking which is constrained by other pe-
destrians.

We now apply the method outlined above on different

empirical fundamental diagrams. In all cases we use T̂
=0.5 s and vmin=0.06 m /s. Starting with Weidmann’s �3�
fundamental diagram, we have the parameters �max
=5.4 m−2 and v0=1.34 m /s, which is displayed in Figs.
7�a� and 7�b� together with our curve, obtained by Eqs.
�1�–�3�.

Next, we apply our method to the fundamental diagrams
of Refs. �2,4,11� and obtain the results presented in Figs.
7�c�–7�h�. The fit functions match all four different empirical
data sets well. All parameters are kept constant over the dif-
ferent data sets, except the maximum density and the free
speed, but these two values are obtained from the data rather
than tuned in order to fit the data.

IV. CONCLUSIONS

The constant-net-time headway is a natural safety mecha-
nism to compensate for the reaction time to unexpected
events. It has been demonstrated that various data sets, from

different countries, all share the same net-time headway T̂
=0.5 s. The particular advantage of our method is that it
follows naturally, without the need of an arbitrary fit func-
tion. Further, all the parameters are measurable, such as the
free speed and the maximum density. There is not a single
free parameter that must be tuned in order to fit the different
data sets. However, it should be mentioned that even though
the maximum density can be estimated, it can normally not
be exactly determined from the data. This is addressed in
recent work �36� that may make it possible to obtain cultur-
ally dependent parameters, such as the maximum density.
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